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Spectral theory for bounded linear operators is used to develop a general class
of approximation methods for the Moore-Penrose generalized inverse of a closed,
densely defined linear operator. Issues of convergence and stability are addressed
and the methods are modified to provide a stable class of methods for evaluation
of unbounded linear operators. © 1992 Academic Press, Inc.

1. INTRODUCTION

A great many linear inverse problems of mathematical physics may be
framed in an abstract setting as linear operator equations of the form

Ax=j (1.1)

which implicitly define the solution x of the given problem. The desired
solution x is often given in terms of the Moore-Penrose generalized inverse
A t in the form x = A tf In all interesting cases the generalized inverse is an
unbounded operator and the challenge is then to provide approximations
to the unknown solution A Y that are stable with respect to perturbations
in the data f This is the subject of regularization theory and there is a
large literature on regularization for the case in which A is a compact, or
bounded linear operator (see, e.g., [17,4,7,1, 11J). However, when A is a
closed, densely defined linear operator it appears that relatively few special
results are known (see, e.g., [9, 13, 15J). For closed, densely defined linear
operators a general theory of regularization would subsume the theory for
bounded linear operators (e.g., [3, 4J) and would also apply not only to
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linear integral equations of the first kind, but also to certain intregro­
differential equations, problems involving best approximate solution of
two-point boundary value problems [8], and Cauchy problems for elliptic
partial differential equations [10]. One of the aims of this paper is to
provide an outline of a general theory of regularization for closed, densely
defined, possibly unbounded, linear operators.

Some linear inverse problems can be explicitly inverted to give a solution
of the form

x=Lj, (1.2)

where L is a known, but unbounded, linear operator. The solution x is
then unstable with respect to small perturbations in f Basic examples of
this type would include, for instance, numerical differentiation, the explicit
solution of Abel equations, and the estimation of normal derivatives from
Dirichlet data for elliptic boundary value problems. For the explicit equa­
tion (1.2) the challenge is to provide stable methods for computing Lf
when f is only approximately known and the approximate data perhaps do
not belong to the domain of L.

Our goal is to develop a general framework, based on spectral theory
for bounded linear operators in Hilbert space, for stable approximate
solution of abstract inverse problems, posed in either implicit or explicit
form, involving closed, densely defined linear operators which may be
unbounded. It is our intension to frame the broad outlines of the theory,
but we will not investigate all details. In particular, questions of optimal a
posteriori parameter choice and finite dimensional approximations, as
worked out in [2] and [5], respectively, for bounded operators will not be
addressed.

2. THE IMPLICIT PROBLEM

The equation

Ax=j, (2.1 )

where A is a linear operator from a Hilbert space HI into a Hilbert space
H 2 (we denote the inner product, norm, and identity operator in any
Hilbert space by (', '), 11·11, and I, respectively) is guaranteed to have a
unique solution only when f lies in R(A), the range of A, and the nullspace
of A, N(A), is triviaL However, there is a well-known formalism for
assigning a unique pseudo-solution to (2.1) in the case when N(A) is
nontrivial and f lies in a certain superspace of R(A) which is dense in H 2 .
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Specifically, if A is closed and defined on a dense subspace 2&(A) c HI>
then a unique pseudo-solution can be defined for each f in the dense
subspace R(A)+R(A)-1 of H 2 by x=Atj, where xE2&(A)nN(A)-1 satisfies

Ax=Q[ (2.2)

and Q is the orthogonal projector of H 2 onto R(A), the closure of R(A).
The operator A t so defined on 2&(A t) = R(A) + R(A)-1 is called the
Moore-Penrose generalized inverse of A and provides a unique generalized
solution of (2.1) (the least squares solution of minimum norm) in cases in
which classical solutions might not exist, or existing, might not be unique.

The operator A t is a closed linear operator which is bounded if and only
if the range of A is closed (see [6, 9] for basic information on the
generalized inverse of a closed linear operator). For purposes of stable
approximation of generalized solutions in the presence of errors in f it is
therefore important to approximate A t by bounded linear operators.
In [3,4] a general approach to such approximations is developed for
bounded linear operators A. Lardy [9] has given a series representation
for A t when A is a closed densely defined linear operator. In this section
a general stable method for approximating A t when A is densely defined
and closed, but possibly unbounded, is provided. The development is a
generalization of the corresponding theory for bounded operators. The
general results are illustrated for certain specific continuous and iterative
approximation methods.

Our representation of A t as a limit of bounded linear operators and the
associated theory of regularization parallels the development in [3, 4] and
may be motivated by some purely formal considerations. We begin with
the well-known fact that

AtAx=Px for x E 2&(A),

where P is the projector of H 1 onto R(A*). Therefore

for YE2&(AA*).

That is, AtAA* and A* coincide on a dense subspace of H 1 • We see that
if these operators were everywhere defined and if the inverses involved
existed, then formally we would have

It is remarkable that, by a theorem of von Neumann, the operators
A *(I+ AA *) - 1 and (I + AA *) -1 are everywhere defined and bounded.
Moreover, (I+ AA *) -1 is a bounded self-adjoint operator with spectrum
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contained in [0, 1]. However, if R(A) is not closed, then the operator
1- (I + AA *) -1 does not have a bounded inverse and hence we are led to
replace the right hand side in the formal representation of A t given above
by

A *(l+ AA*)-l~((l+ AA *)-1),

where ~(t) (ex> 0) is a family of continuous real-valued functions on
[0, 1J that approximates 1/(1- t) in an appropriate sense.

Having laid the intuitive basis of the general method of approximating
A t by bounded linear operators, we now proceed to a systematic develop­
ment of approximation and regularity results. We begin by stating a
fundamental theorem of von Neumann (see [14, Chap. 8; 9J). It will be
convenient here and in the sequel to use the notation A := (I + AA *)-1
and A := (I +A*A)-l.

PROPOSITION 2.1. If A is a closed densely defined linear operator, then
A :=(l+AA*)-l, A*A, A :=(l+A*A)-l, and AA are bounded (every­
where defined) linear operators. Moreover, A and A are self-adjoint and their
spectra lie in [0, 1].

We now need a technical lemma.

LEMMA 2.2. If gE C[O, 1J, then A*g(A)y= g(A) A*y for all YEE.0(A*)
and Ag(A)x= g(A)Axfor all xEE.0(A).

Proof Let z=A*Ay, where YEE.0(A*). Since AYEE.0(AA*), we have
z E E.0(A). Also, Az = - Ay + Y E E.0(A *), hence z E E.0(A *A) and

(I+ A*A)z= (I + A*A) A*Ay = A*(l+AA*) Ay = A*y.

Therefore,

A*Ay = z = (I + A*A)-lA*y= AA*y.

From this it follows that

A*p(A)y=p(A)A*y, for y E E.0(A *),

where p is any polynomial. Now let {Pn} be a sequence of polynomials
converging uniformly to g on [0, 1]. Then for any y E E.0(A *) and
xEE.0(A),

(A*g(A) y, x) = (g(A) y, Ax) = lim(Pn(A) y, Ax)
n

= lim(A *Pn(A) y, x) = lim(Pn(A) A *y, x) = (g(A) A *y, x)
n n
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and hence A*g(A)y=g(A)A*y. The other equality is.established in the
same way. I

Suppose now that {g~,} '" > 0 is a family of continuous real-valued func­
tions on [0, 1] satisfying

lim (1 - t) ~(t) = 1
",-->0

for each t E [0, 1) (2.3 )

1(1- t) ~(t)1 is uniformly bounded (2.4 )

(we also occasionally use an index f3 --+ 00, or even a discrete index n --+ 00,

without special notice). Approximations x'" to AY will be formed in the
following way:

(2.5)

A notable feature of these approximations is their stability; that is, while
A Y depends discontinuously of f (since A t is unbounded), the operators
A *A and ~(A) are both bounded and hence x"', for each fixed 0( > 0,
depends continuously on f

Some simple examples are in order. The method resulting in Tikhonov
regularization [17] is given by

~ (t) 1_-,-
'" - 1+ (0( - l)t

The iteratively defined sequence

(2.6)

.%(t) = 0, ~+ l(t) = 1+ t~(t) (2.7)

results in Lardy's method [9], while for f3 --+ 00

~(t)=~fPe-«l-tJ/t)u du,
t 0

~(O) = 1 (2.8)

gives a representation for At which was studied by Showalter [16] for
bounded linear operators. Each of these examples has a variational inter­
pretation in terms of minimization of a least squares functional. In general,
we have

since R(A)~£0(AA*).

Also,
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For (2.6) we then have, for each v E £&(A),

(Ax a , Av) = ((I - A)(I+ (IX -1) A)~If, Av)

= (f, Av) - IX(A *AY;.(A) f, v),

that is,

21

farall vE£&(A).

In this form (2.6) gives what Lattes and Lions [10J call the method of
quasi-reversibility for the closed unbounded operator A. On the other
hand, this equation is the Euler equation for the minimization of the
penalized least squares functional

over £&(A) and hence (2.6) is in fact Tikhonov's method [17]. In a similar
way, the method (2.7) of Lardy is seen to satisfy X o= 0 and

(Ax n + l' Av) + (X n + 1 - Xn' V) = (f, A v),

which is the Euler equation for the functional

for all v E f0(A)

X E £&(A).

Therefore Lardy's method may be interpreted as an iterative least squares
method in which the penalty term Ilx - x n l1

2 has a stability influence on the
new approximation X n + l' Finally, for the method (2.8) it is easy to check
that

dx f3 = _ (A *Ax - A *f)
dfJ f3'

for fE£&(A*).

However, A *Ax - A *f is the gradient of the least squares functional
!IIAx- fl1 2 and hence (2.8) may be interpreted as a method of con­
tinuously following the trajectory of steepest descent for the least squares
functional.

We now present the basic convergence theorem.

THEOREM 2.3. Iff E £&(A t), then X a -> A tf in graph norm as ()( -> O.

Proof Note that

f = Qf + (I - Q)f= AAY+ (I - Q)fE R(A) + N(A*).
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Therefore, by Lemma 2.2,
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x~ = A*AY:,(A)f= A*AY:,(A) AAy+1Y:,(1) A*(l- A)f

=A*A1Y:,(1) Atf= (I -1) Y:,(1) AY (2.9)

We then find from (2.3), (2.4), and the spectral representation of the
bounded self-adjoint operator 1 that

as IX -* 0,

where P N(A) is the projector of HI onto N(1) = {O}. Also, since A maps H 2

into '@(AA*), it follows from (2.5), (2.9), and Lemma 2.2 that x~E'@(A)

and

and hence

Ax~ - AAy= (I - (I - A) Y:,(A» Qf -* P N(A) Qf = 0, as IX -* 0.

Therefore {x~} converges in graph norm to A tf I
Under appropriate conditions convergence rates may be obtained. For

example,

THEOREM 2.4. If fE.@(At) and AYER(A*A), then Ilx~-Atfil =
O(W(IX)), where W(IX) = max,E[O,I] 1-r(1--ry:'(1--r»)1·

Proof Suppose AY=A*Aw. Let z=w+AY; then

(/-1)z= w+AY-1w-1((1+A*A)w- w)=AY

Therefore by (2.9),

and the result follows. I
For the methods (2.6), (2.7), and (2.8) one has W(IX) = IX, w(n) = O(ljn),

and w(P) = O(ljp), respectively. Rates of the above type can also be
obtained for approximation of certain functionals of AY by transferring the
regularity condition from the solution to the functional. In fact, if one
approximates the functional (AY, e) by (x~, e), then, if e= A *Aw, one
obtains, as in the proof of Theorem 2.4, e= (1 -1)w and hence

I(A y; e) - (x~, e)1 = II ((1-1)[x~ - AYJ, w)1 = O(W(IX».
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If stronger assumptions are made on A, then a correspondingly stronger
convergence result may be achieved. If we assume that R(A) is closed, then
it is well-known that A t is a bounded operator [6, 9] and in this case
convergence in operator norm is possible.

THEOREM 2.5. If R(A) is closed and the convergence in (2.3) is uniform
on closed subintervals of [0, 1), then

as a ~ O.

Proof Since R(A) is closed, At: H 2 ~N(A)1- is everywhere defined and
bounded. Also, by the closed graph theorem, there is a number m > 0 such
that

IIAxl1 ~ m Ilxll for xEN(A)-l.

From this it follows that, considered as an operator on N(A)-l, we
have 11.411<1. Indeed, if xEN(A)-l, then x=(l+A*A)w for some
wE'@(A*A)nN(A)-l. One then has

Ilxll Ilwll ~ (x, w) = IIwl1 2+ IIAwl1 2
~ (1 +m2

) Ilw11 2;

therefore

v 1
IIAxl1 = Ilwll ~-1-21Ixll·

+m

But, as in the proof of Theorem 2.3, we have

(2.10)

and the result follows since R(A t) ~ N(A )1-. I
Uniform convergence rates in Theorem 2.5 may be provided in terms of

the function

Q(a)= max 11-(1-t)~(t)l,
IE [0.1l]

In fact, from (2.10),

where
1

Jl= 1+m2 '

For example, in the methods (2.6), (2.7), and (2.8), one has .0(0() = O(rx),
.o(n) = f1n + 1, and .0(13) = exp( - (1 - f1) 13/Jl), respectively.

In contrast to the strong convergence results given above, if less is
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assumed of f, namely that f1:!?fl(At), then not even weak convergence can
be expected.

THEOREM 2.6. If an -+ 0 and x"'n~ z (weak convergence), then
fE!?fl(At) and Ay=z.

Proof As in the proof of Theorem 2.3, we have

AX"'n = (I - A) ~JA)f-+ Qf.

But the graph of A is closed and convex, and therefore weakly closed. It
follows that Az = Qf, that is,

f E R(A) + R(A)1- = !?fl(A t).

Also, X"'nER(A*)s;N(A)l. and therefore, since N(A)l. is weakly closed, we
find that zEN(A)1-, that is, z=Atf I

As an immediate corollary we obtain the following nonconvergence
result which generalizes a theorem of Maslov [12].

COROLLARY 2.7. If f1:!?fl(At), then Ilx",ll-+ 00 as a -+0.

We now investigate the effect of data perturbations on the approxima­
tions {x",}. Suppose that only approximate data fb E H 2 are available,
where b~ Ilf - fbll is a known estimate for the quality of these data. An
approximation to A tf using the available data is then given by

x~ = A*A~(A)fb. (2.11)

Since the approximate data are described by an arbitrary function fb
satisfying Ilf - PII ::::; b, one can expect in general that fb 1: !?fl(A t) and
hence, by Corollary 2.7, Ilx~11 -+ 00 as a -+ 0 for fixed b > O. This raises the
question of Tikhonov regularity of (2.11), that is, the possibility of a choice
a=a(b)-+O as b-+O in such a way that x~(b)-+AY as b-+O. Such a
regularity condition can be given in terms of the quantity

r(a) = max It~(t)l.
IE [0,1]

(2.12)

THEOREM 2.8. Suppose fE!?fl(At) and a=a(b)-+O as b-+O. If
b J r(a(b)) -+ 0, then X~(b) -+ A Y as b -+ O.

Proof Since x", -+ Ay as a -+ 0, it suffices to consider the quantity
Ilx~(o)-x",(o)112. For this we have, since R(A)S;!?fl(AA*),

Ilx~(b) -x",(b)11 2= (A*A~(A)(fb - f), A*A~(A)(fb- f))

= (A~(A)(fb - f), (I - A) ~(A)(fb- f)).
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However, II(I-A)~(A)II is bounded by (2.3) and it follows that
Ilx~(o)-xa(o)112<b2r(ct(b)). I

3. THE EXPLICIT PROBLEM

In the preceding section a general approach to forming stable
approximations to an unknown unbounded generalized inverse operator
was developed. It is often the case that, as opposed to computing an
unknown generalized inverse, one wishes only to compute stable
approximations to the values of a known unbounded operator L in order
to get stable approximations to the explicit solution of an inverse problem
as given by (1.2). A simple case in point is the problem of approximate
differentiation in which an unbounded operator (the derivative) is to
be applied to a function that is known only approximately and the
approximate function (the data) might in fact be nondifferentiable.
Moreover, even if the approximate data are differentiable, small errors in
the data might be magnified to unacceptable levels by the action of the
unbounded derivative operator. These considerations lead us to develop in
this section a general stable approximation scheme for the evaluation of
unbounded linear operators. Our presentation will be relatively brief as the
ideas and techniques are similar to those of the previous section. For a
more extensive computational treatment of a particular method based on
Tikhonov regularization for evaluation of unbounded operators see
Morozov [13, Chap. 4].

Consider a closed, densely defined unbounded linear operator
L:!?2(L)sH1 ---+H2 from a Hilbert space H j into a Hilbert space H 2.
Given x E !?2(L) we wish to form stable (i.e., continuous in x) approxima­
tions to the element

y=Lx.

Suppose that {Ta L > 0 is a family of continuous real-valued functions on
[0, 1] satisfying

TaU) ---+ l/t as ct ---+°for each t E (0, 1]

and

ItTAt)1 is uniformly bounded.

(3.1 )

Such a family may be formed by taking TAt) = ~(1 - t), where ~(t)

satisfies (2.3) and (2.4). Then, for each ct > 0, the elements

(3.2)
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are defined for each x E HI and continuous in x since LL and Trx(L) are
bounded linear operators. We will show Y rx ~ Lx as a ~ 0 and that this
approximation scheme is regular with respect to perturbations in x under
appropriate circumstances.

Two particularly simple examples of methods of this type are methods
based on Tikhonov regularization and Lardy's method given by

1
Trx(t) = (1 )a+ -a t

and

(3.3 )

(3.4 )

respectively. The choice (3.3) gives rise to the method

Yrx = L(aL*L + I)-Ix (3.5)

which has been studied by Morozov [13] and the choice (3.4) gives the
simple iterative method

Yl=LLx, Yn+l =LLx+ (I - L) Yn- (3.6)

THEOREM 3.1. IfxE~(L), then Yrx~Lx as a~O.

Proof We have

Lx- Yrx = (L- LLTrx(L))x = (I -LTrx(L)) Lx;

however, 1- LTrx(L) converges strongly to zero by (3.1). I

THEOREM 3.2. If Y rxn~ Y for some sequence an ~ 0, then x E ~(L) and
Lx=y.

Proof Note that Yrxn= LLTrxn(L)x and LTrx.(L)x ~ x as an ~ O.
Therefore, since the graph of L is weakly closed, we have x E ~(L) and
Lx= y. I

COROLLARY 3.3. If x¢ ~(L), then II yrxII ~ 00 as a ~ O.

Under additional assumptions convergence rates may be provided.

THEOREM 3.4. If xE~(L)nR(L*), then IIYrx-Lxll =O(w(a)), where
w(a) = max tE [0.1] 1(1- tTrx(t))tl·
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Proof If xE£0(L) and x=L*z, then

Y,,- Lx = LLT,,(L)x - Lx = (I - iT,,(i))Lx = (1- LT,,(L)) iz

27

and the result follows immediately. I
Note that w(a) is the same function as in Theorem 2.4 (with

T,,(t)=9'(l-T)). In particular for the method (3.5) we see that the rate
O(a) is attainable. The next theorem shows that this rate is essentially the
best possible.

THEOREM 3.5. Suppose x E £0(L) and II y" - Lxii = o(a), where y" is given
by (3.5), then xEN(L).

Proof Let

e" = y,,- Lx = LL[aI+ (l-a)LJ ~lX - Lx

= {[aI + (1 - a) i ] ~ 1i-I} Lx.

Then

[aI + (l-a)iJ e" = a(i - I) Lx.

Since rxI + (l-a)i is bounded and IleJ = o(rx), we find that

(i-I)Lx=O or iLx=Lx.

Therefore, Lx E R(i) <;;;. £0(LL*) and

Lx = (I+ LL*)Lx,

that is, LL*Lx = O. Hence

0= (LL*Lx, Lx)= IIL*LxI1 2
,

that is, LXER(L)nN(L*)= {O}. I
We now investigate the influence of errors in the data. Suppose that the

available data are given by a function x" (which need not lie in £0 (L))),
where Ilx" - xii 0:( 6. We may form the approximations

y~ = LLT,,(L)x".

Since in general x" ¢. £0(L), we may expect that II y~11 ~ Cf) as rx ~ 0 for fixed
6. For regularity we would seek a choice rx = rx(6) ~ 0 such that y~(,,) ~ Lx
as 6 ~ O.
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THEOREM 3.6. If 0 Jr(O((o)) ~ 0 as 0~ 0, where r(O() is given by (2.12)
(with T,,(t) = ~(1- t)), then Y~(o) ~ Lx as 0~ O.

Proof As in the proof of Theorem 2.8, we find that

o 2 v V o v V oIIY,,(o)- Y,,(o)11 = I(LT,,(o)(L)(x -x), (I-L) T,,(o)(L)(x -x))1

,::;; 02r(0((0)) IILT,,(L)II,

and the result follows. I
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